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A B S T R A C T

This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based
modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages
and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autono-
mous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our con-
tributions are that (1) we proposed a model that incorporates individual heterogeneous pre-
ferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial
change of service coverage due to ride sharing. Our results show that switching from traditional
taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining
the service level and without significant increase in wait time for the riders. The benefit of ride
sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel dis-
tance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic
ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi
capacity, increases system flexibility. Constraining the sharing to be only between two groups
limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride
sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower
the service levels in the suburban regions of the city.

1. Introduction

Urban roadways, despite being one of the most important infrastructures in the modern world, often bear high levels of
congestion and pollution. In 2014, the transportation sector accounts for 26% of all greenhouse gas (GHG) emissions in the United
States, which was just behind the electric power sector (U.S. DoE, 2016). There are different ways of reducing the environmental
impacts from the transportation sector. Current solutions mainly focus on solving the problem at the vehicle level, such as (1)
improving the vehicle fuel economy by making the engine more efficient or reducing the vehicle weight (Farrington and Rugh,
2000; Greene and Plotkin, 2011) and (2) switching the transportation fuel to less carbon intensive sources such as biofuel and
electricity (Fontaras et al., 2008) by adopting flex-fuel and electric vehicles in cities with appropriate power generation mix (Cai
and Xu, 2013; Hawkins et al., 2013). However, solutions at the system level are less explored. One of the factors contributing to the
significant environmental impacts of the transportation sector is its inefficiency. According to the recent national household travel
survey (NHTS) data, the average occupancy of personal vehicles is 1.6 (FHWA, 2011), showing that most cars do not run at their
full capacity.
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In recent years, with the growth and acceptance of the sharing economy and autonomous vehicles (Teubner et al., 2014; Krueger
et al., 2016; Wadud et al., 2016; Gurumurthy and Kockelman, 2018), ride sharing has emerged as a potential avenue to reduce the
transportation sector’s energy use and emissions. We define ride sharing as sharing a vehicle with other groups of riders1 along a fully
or partially overlapped route, serving the travel demands of multiple groups of riders in the shared vehicle (for example, a shared
taxi). This is different from car sharing, for which a car owner or a fleet owner allows others to use their car when it is not in use (for
example, ZipCar, car2go, UberX). Ride sharing using personal vehicles has been tested and implemented in various platforms, such as
UberPool and Lyft Line. Uber claims that about 20% of its rides globally are shared rides using UberPool (Fortune, 2016). While the
social and environmental impacts of these ride service apps are still in debate (e.g., increasing the total vehicle miles traveled and the
total number of cars on the road, competing with taxi drivers for jobs and public transit for riders) (NYC DOT, 2016b), increasing
vehicle occupancy rate in private and public vehicles (e.g., taxis) through ride sharing still offers great opportunities in improving the
transportation sector’s efficiency.
Many earlier studies (Barth and Todd, 1999; Galland et al., 2014) have focused on the traditional ride sharing (i.e., car pooling),

for which the ride sharing is pre-arranged (e.g., with friends, family members, and colleagues) and often has the same trip origins
and/or destinations. For example, Caulfield (2009) analyzed one day’s commute trip data (reported as part of a Census survey) in
Dublin, Ireland and found that 4% of the respondents ride-share to work. They estimated that this ride sharing reduced 12,674 t of
CO2 emissions annually. Hong et al. (2017) proposed a clustering algorithm on GPS trace data to match trips and select routes for
carpooling. Most recently, Dong et al. (2018) analyzed data from China‘s ride sharing service DiDi and concluded that it is a viable
mode of transportation to complement taxis in serving increasing demand.
In recent years, enabled by the development of information and communication technologies, dynamic ride sharing has received

increasing attentions. Dynamic ride sharing allows shared rides to form in short notice and among strangers who do not know each
other’s trip itinerary. The higher flexibility of dynamic ride sharing offers additional opportunity to maximize sharing benefits and
improve system efficiency. Fig. 1 presents an example of dynamic ride sharing where three rides are being combined into one single
shared ride.
In a dynamic ride sharing system, it is critical to match the appropriate riders to form the shared ride. Therefore, many researchers

focus on developing algorithms for ride matching. In particular, Kleiner et al. (2011) proposed an auction mechanism to match rides
between two parties and tested its performance using the map of Freiburg, Germany with simulated rides randomly sampled from a
uniform distribution. Agatz et al. (2011) compared the optimization-based approach with a simple rule-based greedy matching
algorithm using travel data from Atlanta, Georgia and concluded that optimization methods have better system performance in
matching rides and reducing total system vehicle-miles-traveled (VMT). However, to simplify the analysis, these studies limited the
number of rides that can be shared at a time to be two (i.e., maximally, two passengers can share a vehicle). More recent research has
proposed more flexible models to optimize passenger-vehicle matching and vehicle routing, considering the vehicle capacity and the
number of passengers traveling together (Lin et al., 2012; Santos and Xavier, 2015). Levin (2017) designed an algorithm to optimize
route choice for autonomous vehicles, considering congestions due to other vehicles in the network, using linear optimization models.
Other recent research, Li et al. (2016) has focused on finding an optimal route choice model for last mile parcel delivery using shared
autonomous vehicles. While these studies have focused on providing efficient solutions to the dynamic ride sharing problem with
given requests and vehicle instances, we cannot draw conclusions on the city-scale impacts of implementing these systems.
Qian et al. (2017) proposed a “group ride” system, in which different groups of riders gather at a predefined location and are

picked up together. They tested the system using taxi trip data from 30-min periods during peak and off-peak hours in three cities and
concluded that this types of ride sharing can reduce vehicle VMT by over 47%. However, being different from the door-to-door
service provided by traditional taxis, group ride requires the riders to walk to and from the taxi pick-up and drop-off locations,
reducing the convenience of taking taxis. Santi et al. (2014) introduced the concept of share-ability networks and proposed a
mathematical model to quantify the benefits of ride sharing. They analyzed the taxi trip data in New York City and concluded that
ride sharing can reduce cumulative trip length by 40% or more. However, their model also constrained the sharing to be between two
riders, ignoring the potential benefits from a more flexible system. Additionally, they assumed that the tolerance level for trip delay is
identical for all riders, ignoring the individual heterogeneous tolerance and needs in the real world.
Agent-based models have been used in the field of transportation for many purposes, including travel time estimation (Chen and

Rakha, 2016), disaster relief logistics (Wang et al., 2016), and choice models (Zou et al., 2016) to incorporate individual preferences
with regards to transportation modes. In the field of ride sharing, to account for the individual heterogeneity, researchers developed
efficient agent-based models to simulate dynamic ride sharing (Nourinejad and Roorda, 2016; Fagnant and Kockelman, 2014; Chen
et al., 2016). However, these models are mostly based on simplified system setups, not considering the real-world road infrastructure
and the actual travel demands. Some studies (Brownell and Kornhauser, 2014; Ma et al., 2015; Fagnant and Kockelman, 2016)
focused on the economics of ride sharing and showed significant potential monetary savings in New Jersey, Beijing, and Austin. Ma
et al. (2015) also showed that using ride sharing, 2.2 million kg of carbon dioxide can be saved every year in Beijing, while Fagnant
and Kockelman (2016) showed that each shared autonomous vehicle has the potential to replace eleven private cars. Martinez et al.
(2015, 2014) studied shared taxis in Lisbon and Porto, respectively, to infer system level benefits. Both papers (Martinez et al., 2015;
d’Orey and Ferreira, 2014) showed that taxi sharing can help passengers reduce travel costs with an increase in total transit time.
Alonso-Mora et al. (2017) showed that the percent of riders served by the system is improved with the increased amount of fixed
delay in travel time that is accepted by the riders using small and large capacity autonomous vehicles. However, most existing work

1We consider a group of riders to be made up of one or more persons riding from and to the same origin and destination using a single request.
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does not consider the fact that taxis and riders could have individual preferences on the thresholds for the inconvenience (e.g., longer
ride time) caused by sharing. For example, Ma et al. (2015) restricts feasible shares based on the same threshold of the ratio of
monetary gain to time delay for all the riders; Alonso-Mora et al. (2017) uses a fixed allowable time delay for all riders, while other
work (Brownell and Kornhauser, 2014; Fagnant and Kockelman, 2016) match taxi rides appearing within a certain fixed grid area,
with nearby origins and destinations, and within a time window. Only a few studies (d’Orey and Ferreira, 2014) consider individual
sharing preferences to reflect the individual heterogeneity.
Additionally, with the fast development of autonomous vehicles, ride sharing provided by shared autonomous vehicles has also

received more and more attention. Unlike taxis whose drivers need to change shifts and take breaks, autonomous vehicles can be
available ×24 7. So shared autonomous taxis can offer additional benefits compared to the traditional ride sharing. However, the
differences and synergies between the two systems have not been fully evaluated. Existing studies either ignored the driver shifts
since their analysis was on a short time frame (often limited to an hour), focused exclusively on the peak demand periods (Brownell
and Kornhauser, 2014; Ma et al., 2015; Fagnant and Kockelman, 2016), or studied dynamic ride sharing using either exclusively
autonomous vehicles (Ma et al., 2015; Martinez et al., 2015; d’Orey and Ferreira, 2014; Alonso-Mora et al., 2017) or exclusively
traditional vehicles (with shifts) (d’Orey and Ferreira, 2014). It is essential to compare both types of vehicles in the same system in
order evaluate their impacts on a fair ground.
To address the above mentioned limitations of existing models, this research aims to use agent-based modeling to quantify the

environmental and energy benefits of dynamic ride sharing using traditional and autonomous taxis by taking into account (1) the
individual heterogeneous preference in whether or not to participate in ride sharing and what level of trip delay is considered as
acceptable, (2) real-world travel demands and road infrastructures, (3) the flexibility to allow multiple groups of riders to share the
ride when vehicle capacity permits, and (4) the different availability of autonomous and traditional taxis (traditional taxis are
unavailable during the time between two shifts while autonomous taxis are always available).
We apply our agent-based model on a case study of New York City (NYC) taxis. The rationale for studying NYC is provided in

Section 2.2. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a
model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis with shifts to autonomous taxis; and
(3) we examined the spatial change of service coverage due to ride sharing.

2. Method and data

2.1. Agent-Based Model (ABM)

We used agent-based modeling to study ride sharing because of its capability to incorporate individual agent’s different needs and
preferences. Additionally, we can also collect statistics of each rider entering the system and follow every taxi as it moves through the
city, which enables us in analyzing the data at an individual level. In this study, we have two types of agents: taxis and rider groups. A
rider group refers to one or more passengers that are traveling together as a group (organized before the ride sharing, e.g., a family).
Each taxi and every rider group has their own parameters in this model as discussed below.

Fig. 1. Dynamic point-to-point ride sharing - the three rides shown can be combined to a single ride by a car with a capacity of 4 with a small
amount of delay in arrival for each rider. (PU- Pick Up, DO - Drop Off).
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The system-level parameters in the model are the number of taxis (fleet size) and the percent of riders who are willing to share
their ride with others (Percent Sharing). The taxis have a parameter for taxi capacity (set to 4 passengers in this study). The para-
meters of the rider groups include the pick up and drop off location and time, the number of passengers in the group, and the fraction
of distance that a rider group considers as an acceptable deviation (deviationTolerance2). In order to represent the heterogeneity of
riders, we have set the deviation tolerance to be distributed as a triangular distribution between 0 and 1 with the mode set to be 0.5. A
triangle distribution has been chosen because there is a lack of information to estimate the actual deviationTolerance. The triangular
distribution gives us the flexibility to adjust its mode according to what we believe to be the most common acceptable route de-
viation. These deviation tolerances are assigned randomly to all the riders in the network. A detailed list of all parameters in the
model are provided in the Supplementary Information (Section SIA). This model is built using the AnyLogic simulation software.
Fig. 2 shows an overview of the model. The system is initialized by loading the map3 of the city-of-interest. The rider data (from

historical trip data) is also loaded into the memory. All the taxis enter the model at the beginning and the riders enter the model one
by one as per the pick up time in the historical trip data. The initial setup allows 30% of the taxis (randomly chosen) to be available
and assigns the remaining 70% taxis a random destination (sampled from historical trip data). The initial number of busy taxis does
not impact the model results because the demand between midnight and the morning peak is very low (more in Section SIB in the
Supplementary Information). So the system has time to “self-balance” the available taxis. All the taxis will follow actions as described
in Algorithm 2, while all the riders will follow actions as described in Algorithm 1.
Algorithm 3 serves the purpose of linking the taxi algorithm (Algorithm 2) and the rider group algorithm (Algorithm 1). It does so

by providing a method for the rider groups and taxis to be matched with each other. A rider group first seeks a shared ride before
seeking an unoccupied ride. While seeking an unoccupied ride, the rider group is matched with the closest unoccupied taxi. In the
shared mode, the taxi first filters all potential sharing requests using the preCheck algorithm (SIA.4.2.2 preCheck), which is a two-step
process. We use two rectangular bounding boxes to indicate the “direction” of the trips. Step 1: the first biggest bounding box is
formed using all the pick up and drop off points that are yet to be visited by the taxi (the current trip chain) and the current location
of the taxi (shown as the yellow colored cells in Fig. S1 in Section SIA.4.2.2). This bounding box covers the entire original trip chain.
The drop off point of the candidate share is then evaluated relative to this bounding box. If the drop off point of the candidate share is
within the bounding box, then this candidate share passes the preCheck and will be further evaluated by the bestRoute algorithm (Fig.

Fig. 2. Model Overview. Matching colors in the flowchart represent an event/decision taking place simultaneously by the rider and the taxi. The
circular blocks labeled A, B, C are used as “connectors” to imply a transfer of flow to their corresponding connector.

2 The deviationTolerance is calculated as =deviationTolerance Acceptable maximum trip distance after sharing Original Trip Distance
Original Trip Distance . We have defined the distance

that a rider group allows for deviating from their original path to be proportional to the unshared trip distance, because it is unreasonable to expect a
rider group whose trip is short (e.g., 0.5 miles) to accept a large change in route (e.g., 2 miles).
3 The map has information about the locations of the load links and the speed on these roads. All movement by the agents in the model is done on

the road links on the map that is loaded in at the start of the simulation. Specific routes are chosen by using the routing service provided by Anylogic,
which uses Dijkstra’s algorithm to calculate routes.
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S1 a). Step 2: If the drop off point of the candidate share is outside of this bounding box, a second bounding box will be formed using
the drop off point of the candidate share and the current location of the taxi (shown as the gray shaded boxes in Fig. S1 c and d). If the
second bounding box fully covers the first bounding box (Fig. S1 c), then this candidate share also passes the preCheck and will be
further evaluated by the bestRoute algorithm (SIA.4.2.3bestRoute). Basically, the second bounding box makes sure that we don’t reject
candidate trips that travel further than the existing trip chain. Because the pick up location of the candidate will be close to the
current location of the taxi (sharing requests are only broadcast to nearby taxis), only the drop off location need to be evaluated.
The bestRoute algorithm evaluates all the share requests by selecting the best possible permutation of points within a given share

that minimizes inconvenience caused to all the rider groups involved in the share request (more details in Section SIA.4.2.3 of the
Supplementary Information).

Algorithm 1. Rider Group Algorithm
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Algorithm 2. Taxi Algorithm
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Algorithm 3. Matching Algorithm

For the purpose of model verification and validation, we tested all the model parameters (as discussed in Section SIA of the
Supplementary Information). We also tested various scenarios ran by other similar studies using NYC taxi data, and obtained similar
results. Additionally, we compared our base model, which has 13,500 traditional taxis without sharing, to the current NYC taxis, and
they have similar shift schedules.
The outputs of the model include:

• The number of rider groups leaving the system without being served. A group of rider is left unserved if the total time in system for

M. Lokhandwala, H. Cai Transportation Research Part C 97 (2018) 45–60

51



the rider group exceeds their acceptable waiting time.
• Time stamps for each rider at every status change, the information of which we can use to calculate the following: (Fig. 3)
– Time taken for a taxi to respond to each rider group’s request and commit a pickup, TR
– Time that a taxi took to reach a rider group, TW
– Riding time for each trip, TRide
– Time between the arrival of the rider in the system and its departure from the system after reaching its destination, TSYS

• The number of rider groups and total passengers in a taxi at any time
• The distance traveled by each taxi with and without passengers
Using the information from these outputs, we can infer:

• The number of vehicles that can be reduced in the system under different scenarios
• The degradation in quality of service for the riders in terms of the additional distance traveled, additional time taken to reach
destinations, as well as the increase in waiting time for the riders.
• The reduction of distance traveled by the taxis due to ride sharing and consequently the reduction of greenhouse gas emissions
from the taxis. We use ×4.17 10 4 metric tons CO2-eq/VMT estimated by EPA (2017) to convert the changes in VMT under
different scenarios to emission reductions.

2.2. Data and exploratory analysis

We applied our model to NYC taxis as a case study to quantify the impacts of ride sharing at the city-scale. Although our analysis is
based on one city, it is notable that the model and framework is applicable to any city if similar data is available. We choose NYC as
our case study due to the following reasons:

• Data availability: NYC DOT (2016b) has published an extensive and highly detailed database which allows us to validate the
agent-based model at a micro level.
• Potential impacts: The great demands of taxi rides in NYC indicate potential significant saving opportunities. The average number
of daily trips by taxis in NYC is 485,000 (NYC DOT, 2014). During the evening peak hour, on average, there are over 8000 pickups
within every 15min (Fig. 4a).
• Spatial sharability: Trips in NYC are highly concentrated (e.g., over 90% of the taxi pickups are in the Manhattan region)(Fig. 4b).
The high number of taxi rides along with the high spatial and temporal concentration of rides make ride sharing a great trans-
portation alternatives.
• High ratio of single-rider trips: Over 65% of all trips in NYC are single-person trips (Fig. 4c), which leaves a large amount of
unused capacity in the vehicles. This unused capacity can be filled by shared trips.

A sample of the data used in this study is shown in Table 1. The data we used are the green and yellow taxi trip data from the year
2014 (NYC DOT, 2016b). We chose data from 2014 because, at that time, ride sharing applications such as Uber and Lyft had not
been widely adopted to impact taxi ride demands (NYC DOT, 2016a). Hence the trip data from 2014 is more representative of the
total demands in the city than the most recent data. The NYC-TLC records each pick up and drop off for all yellow and green taxis
registered in the city. The green taxis are not allowed to pick up passengers below West 110th Street and East 96th Street, or at the
two NYC airports (NYC DOT, 2014), while the yellow taxis do not have such restrictions. The reason for having this distinction
between the Green and Yellow taxis was to have more taxis available in the suburban region of the city (NYC DOT, 2014). The data
recorded by the NYC-TLC is the trip pick up time and location (in longitude and latitude), drop off time and location (in longitude and
latitude), and group size (number of people traveling together).
We have divided the travel demands in NYC into four phases as shown in Fig. 4a based on pick up time. While we have data for all

phases and the models are ran for the entire day for multiple days, we focus our discussions on the two peak demand periods (the
morning peak from 7:00 am to 3:00 pm and the evening peak from 5:01 pm to midnight), because peak demand periods can benefit
more from system efficiency gain through ride sharing.

Fig. 3. Time stamps recorded for each rider group in the system. e is the time that the rider group enters in the system; tr is the time that the taxi
responds to the rider group to commit a pickup; tp1 is the time that the rider group is picked up; and td1 is the time that the rider group is dropped off
at its destination.
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2.3. Model assumptions

We have summarized the key assumptions in the model here: (1) all rider groups that are willing to share will first try to find a
shared ride before searching for an idle taxi; (2) a rider group who is not willing to share will search for a ride for 5min. If no match is
found, the ride group will exit the system unserved. Correspondingly, the rider groups who are willing to share will search for a
shared taxi for a time that is equal to ×deviationTolerance 5 minutes. If no sharing match is found within this time, the rider group
will send requests to idle taxis. (3) The capacity of all taxis is limited to 4; (4) A rider is only eligible to share a ride if they allow a
distance overage of at-least 100m. Similarly, the maximum a rider can deviate has been capped to 10,000m. These numbers were
tested for sensitivity and we found that the model output parameters did not change significantly by allowing less than 100m or more

Fig. 4. NYC Taxi demand represented as pickups. (a) is a temporal histogram for the pick ups every 15min, (b) shows the spatial density of taxi pick
ups in NYC. (Grid resolution is ° × °0.005 0.005 , roughly equivalent to ×0.5 km 0.5 km). (c) Histogram for the number of passengers in a rider group.
(a) and (b) plots use the data from the date 8/24/2014. (c) uses data from the year of 2014.

Table 1
Sample Data from NYC-TLC with pick up (PU) and drop off (DO) time and locations in latitudes (Lat) and longitudes (Long), and the number of
passengers traveled together (Group Size).

PU Time DO Time PU Lat PU Lat DO Long DO Lat Group Size

06/12/2014 0:00:00 06/12/2014 0:13:24 −73.937 40.797 −73.964 40.760 1
06/12/2014 0:00:00 06/12/2014 0:05:00 −73.993 40.719 −74.001 40.717 3
06/12/2014 0:00:00 06/12/2014 0:04:00 −73.983 40.771 −73.984 40.765 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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than 10,000m of sharing; and (5) We consider the time required for refueling to be negligible.

2.4. Modeling taxi shifts (for traditional taxi scenarios only)

Unlike the current taxis that are temporarily unavailable during the off-shift periods, autonomous vehicles can operate 24 × 7.
Fig. 5 shows the service valleys of NYC taxis. These valleys can be eliminated by autonomous taxis. In order to compare the impact of
ride sharing using autonomous and traditional taxis, we modeled the change of shifts for the traditional taxis to have shift schedules
that are similar to the existing NYC taxi operation schedules (Fig. 5).
To model the shift changes, at the initialization of the model, we determine the number of taxis that are in-shift (ns) based on the

availability ratio at the model start time (normally midnight) and day (weekday or weekend), according to Fig. 5. From all taxis, ns of
them are then randomly selected to be in-shift while the rest to be out-shift. Then, the Algorithm 4 is run every 15min to make shift
changes. Only taxis that are in-shift are allowed to participate in serving rider groups. Further details are provided in the
Supplementary Information SIA.5.2.

Algorithm 4. Shift Change

2.5. Simulation scenarios

We ran several scenarios to analyze the impacts of adopting ride sharing and autonomous driving. We used the demand from May
7th, 2014 from the yellow and green NYC-TLC dataset (NYC DOT, 2016b). We varied the percent of rider groups who were willing to
ride share with others (ride sharing participation) among the values {0%, 25%, 50%, 75%, 100%}, and the fleet size among the values
{3000, 4000, 5000, 5500, 6000, 7000, 8000} for each of the autonomous vehicle case and the traditional vehicles (shifted) scenario. To
compare our results against the existing NYC taxi system, we also ran a base scenario with 13,500 traditional taxis running in shifts
(13,500 is approximately the number of yellow taxis currently in operation (NYC DOT, 2014)). We focused on yellow taxis in this
study because the areas they serve (e.g., Manhattan) have higher trip density and can potentially benefit from ride sharing more.

3. Results

We have evaluated the scenarios mentioned in Section 2.5 to infer city level statistics such as service levels4, fleet reduction,
waiting time, resource utilization, distance traveled by the taxis and the riders, and spatial service level change. We focus on these
statistics because ride sharing can potentially reduce the required fleet size and increase resource utilization. However, ride sharing
may increase riders’ waiting time and requires longer trips due to deviations. So we quantify both the potential benefits and negative
impacts of ride sharing.

3.1. Fleet reduction

By better utilizing the available space in each vehicle, ride sharing can help reduce the fleet size needed to serve the same
demand. We consider a reduced fleet with ride sharing as having the same service level as the existing system, if it can serve the same

4We define the service level as the number of rider groups that were served by the system. (Rider groups may leave the system unserved if they
could not be matched with a taxi within five minutes. This represents the situations that people give up and seek alternative transportation options
after waiting for too long.)
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number of rider groups as the base scenario (percent of rider groups transported from their pick up points to the drop off points as
compared to the scenario with 13,500 taxis without sharing). Fig. 6 shows that a fleet of 5500 autonomous vehicles is sufficient to
serve the demands during the morning peak period without sharing. However, to satisfy the demand of the evening peak period at the
same level as the base scenario (labeled as “B” in Fig. 6), 5,5000 autonomous vehicles with 100% ride sharing participation (labeled
as scenario “A” in Fig. 6) is needed. This service level can also be achieved by scenarios with other parameter sets as described in
Table 2.
It is notable that, with the same ride sharing participation, a fleet of 5500 autonomous vehicles has similar service level as a fleet

of 8000 traditional taxis, indicating that autonomous driving is roughly equivalent to adding 2500 traditional taxis to the system. We
can also see that shared autonomous taxis (Scenario A) has better service level than all the other equivalent scenarios in the morning
peak. The main reason for this is that, for the B and S scenarios, the number of taxis available during the morning peak is less than the
number of taxis in the evening peak (Fig. 5).
A potential concern with ride sharing and a reduced fleet is the increased waiting time and ride time for riders. However, our

results (Fig. 7a) show that, with a fleet of 5500 autonomous taxis (Scenario A), the average waiting time for the served passengers
(TW ) only increases by less than two minutes compared to the base scenario. The other sharing scenarios also have similar waiting
time increase. One reason for the increased wait time is that the rider groups are spending additional time searching for a shared ride

Fig. 6. The average fraction of served rider groups (the ratio of rider groups served by the taxis to the total ride groups) in the morning (7:01 am-
3:00 pm) and evening (5:01 pm-12:00 am) peak periods with different sharing and vehicle type scenarios. The light-red band indicates a service level
within 2% of the base scenario.

Table 2
Scenarios and their parameter sets that can provide service within 2% of the base scenario, during the
evening peak. We will from here on refer to these scenarios by the label.

Scenario Label Parameter Set

B Base Scenario 13,500 traditional taxis and 0% sharing participation
A 5500 autonomous taxis and 100% sharing participation
A2 6000 autonomous taxis and 75% sharing participation
A3 7000 autonomous taxis and 25% sharing participation
S 8000 traditional taxis and 100% sharing participation

Fig. 5. Average number of taxis in operation (on shift) every minute (NYC DOT, 2014).
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when an unoccupied taxi may be more readily available. The average ride time, on the other hand, increases with more ride sharing
participation. In Fig. 7b, we can see that scenarios with higher sharing participation (A, S, A2) have a higher ride time, approximately
10min longer on average.
Fig. 8a shows that the extra distance traveled by shared riders increases only with the percent sharing and does not change

significantly with the fleet size. This is due to the fact that higher sharing participation increases the number of rider groups that

Fig. 7. Change in (a) Waiting time (TW ) and (b) ride time (TRide) under different ride sharing participation and fleet size scenarios.

Fig. 8. (a) Average increase in trip distance for the riders. (b) Average fractional increase in distance for the riders. (c) The average fraction of
individual utilized trip deviation relative to the individual acceptable level, presented as a violin plot. (A violin plot is two vertical density plots
attached together at their bases. The vertical bar shows the range of the values while the horizontal width shows the density of the points at that
value).
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shared the ride together (Fig. 9c). Having more rider groups sharing a ride increases the required deviations and the extra distance.
However, this increase is, on average, less than 33% of the original trip distance (Fig. 8b). Compared to the individual trip deviation
tolerance, Fig. 8c shows that very few people utilizes the full tolerance level in the sharing. About 40% of the riders in scenarios S, A,
and A2 only used less than 25% of the tolerable trip deviation. In scenario A3, where the sharing participation is lower (25%), the
utilized tolerance is even less (over 70% of the riders only used less than 10% of their trip deviation tolerance).

3.2. Increased resource utilization

The vehicle occupancy (calculated as the average number of passengers in a taxi) is a measure of the utilization efficiency of the
taxis in the system. Higher occupancy indicates better system efficiency. Fig. 12 indicates that, on average, the vehicle occupancy
increases with higher participation of ride sharing. With the 4-seat vehicle capacity modeled in this study, the occupancy can increase
from 1.2 (Scenario B) to 3 (Scenarios S and A). The average number of groups in a vehicle indicates the average number of shares
taking place. This value is 1 without sharing (Scenario B) and increases to 2.5 per vehicle (Scenarios S and A) as a result of sharing
(Fig. 9c). This results show that studies which constrain the sharing to be only between two rider groups (Kleiner et al., 2011; Agatz
et al., 2011). are limiting the sharing participation to be at the 50–75% level. The results show that the actual percentage of sharing
participation is lower than the percentage of rider groups that are willing to share. In scenarios that all riders are willing to share, the
actual percentage of rides that are shared is only about 80% (Fig. 9b).

3.3. Environmental benefits

Our simulations have shown that the total distance traveled by the taxis reduces as the ride sharing participation increases. Also,
when compared to the base scenario, we see a reduction of approximately ×2.8 106 km in total per day (which is 55% of the distance
traveled by the taxis) in scenario A, with 5500 autonomous taxis and 100% ride sharing participation (Fig. 10a). This reduction in
total travel distance translates to approximately lowering CO2 emissions by 725 metric tonnes per day. Compared the 40% trip
reduction in NYC from ride sharing estimated by Santi et al. (2014), our value is higher because we did not constrain sharing to be
only formed between two groups. We note though, that this emission reduction is computed purely on the basis of total distance
traveled. However, as estimated by Wadud et al. (2016), autonomous vehicles may help achieve, on an average, a net of 10–15%

Fig. 9. Sharing performance: (a) Change in occupancy in different scenarios with similar service levels; (b) The actual percentage of rider groups
that participated in sharing; (c) Number of rider groups shared a ride together varied with service levels.
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energy consumption saving due to potential changes in driving patterns such as platooning, smoother driving, crash avoidance
mechanisms. Another paper, Gawron et al. (2018), has used life cycle assessment to estimate that introducing connected automotive
vehicles could reduce energy consumption by 9% due to these driving pattern changes. If we consider this additional 9% reduction,
for scenario A, the overall reduction in CO2 emissions will be 802 metric tonnes per day. On the other hand, for ride sharing with
traditional taxis, even though the number of vehicles in Scenario S is higher, the total travel distance is lower than Scenario A
(approximately 45% of the base scenario B). This results in a reduction of ×3.42 106 km or a reduction of approximately 866 metric
tones per day of CO2 emissions.
The percentage of distance for which the taxi is occupied can be studied to gauge the efficiency of the system from an en-

vironmental perspective. Fig. 10b shows that the percent of occupied distance traveled by the traditional taxis (with shifts) increases
with higher sharing participation (from scenario B and S). For the autonomous taxis, the fraction of distance for which the taxi
remains occupied stays relative stable regardless of the level of sharing participation. This tells us that, even though the taxi is sering
more customers, it will be traveling less to do so.

3.4. Spatial coverage change

In order to evaluate the impact of ride sharing on the spatial distribution of service levels, we compared scenarios that have nearly
equivalent service levels (within 5% difference in served riders) and analyzed the fractional change in service level in different
regions. Fig. 11a shows the fractional difference between the base scenario (Scenario B) and Scenario A with 5500 autonomous
vehicles and 100% sharing. We can see that using conventional taxi cabs without sharing as opposed to the SAVs has a positive effect
in the suburban region (shown as the purple and blue cells in Fig. 11a), but has a negative effect (shown as the red cells in Fig. 11a) in
the regions where the demand is the most dense (Manhattan and, more significantly, Times Square). To identify whether this service
coverage change is due to autonomous driving or sharing, we further compared scenarios B and A3 to evaluate the impact of
autonomous driving with no/low sharing and scenarios B and S (Fig. 11c) to evaluate the impact of sharing with traditional taxis. In
both cases, we observed similar spatial service coverage change. On the other hand, when we compare scenarios A and S (Fig. 11e) or
scenarios A and A3 (Fig. 11c), the spatial service coverage is quite similar.These results show that both ride sharing and autonomous
vehicles will cause taxis to focus more on areas with higher demands. While better serving the demands in the regions with more
demand, the reduced fleet decreases the service level in the suburban regions. We justify this in Section SIC by studying the radius of
gyration of the taxis (Cai et al., 2016; Gonzalez et al., 2008). To remedy this disproportionate change in service, appropriate policies
would be needed to insure service in the suburban regions. Such policies could include providing price incentives or restricting a
portion of the fleet to the suburban regions (similar to the way NYC currently distinguishes between Green and Yellow taxi cabs as
mentioned in NYC DOT (2014)).

3.5. Changes in efficiency of matching

The response time (TR) represents the efficiency of matching. Our results show thatTR is lower in the scenarios where the riders are
homogeneous (all sharing or all non-sharing) but higher in scenarios with a mix of sharing and non-sharing riders (Fig. 12). The
reason for this is that our model assumes that all riders who are willing to share will first search for a shared ride. So in scenarios with
mixed rider types (some rider groups are willing to share and some are not), it is possible that a sharing taxi is close to a rider group
that is not willing to share or an occupied non-sharing taxi is close to a rider group that is willing to share. In these situations, the
matching cannot be formed. As a result, the time required to find a match increases in the scenarios with mixed rider types, indicating
a lower efficiency of matching. However, the delay is less than one minute.

Fig. 10. (a) Total distance traveled with respect to the base scenario (Scenario B) for different scenarios. The total distance traveled in the base
scenario is approximately ×6.2 10 km6 (b) The fraction of occupied distance (distance traveled to deliver passengers) for all scenarios.
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4. Conclusion

We have proposed an agent-based simulation model to study the impacts of dynamic ride sharing using both traditional taxis and
autonomous taxis. Our model incorporates the individual heterogeneity in acceptable trip deviation due to sharing, considers the
numbers of passengers traveling together in a group and the available vehicle capacity, and allows shared rides to be formed among
several groups and in the middle of a delivery. We tested our model using New York City taxis as a case study and ran the model based
on real world road infrastructure and historical trip data. The insights we have learned from this study are: (1) while maintaining the
same service level, ride sharing combining autonomous driving with autonomous vehicles can potentially decrease the fleet size by
up to 59% without significant waiting time increase or additional travel distance; (2) the benefit of ride sharing is significant with
increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (725 metric
tonnes per day); (3) constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level
and underestimates the potential benefits; and (4) ride sharing may reduce the service level in the suburban areas, which will require
complementary policies or incentives to help balance service in different regions.
It is notable that this study does not account for a pricing structure (e.g., discounts) of ride sharing and the potential rebound

effects of having increased demand due to the reduced costs. Additionally, the effect of mode choice change due to ride sharing has

Fig. 11. Spatial distribution change in terms of service level. (a) The fraction change in service level in Scenario A compared to Scenario B,
calculated as ServiceB ServiceA

ServiceB
. (b) The fraction change in service level in Scenario B compared to Scenario A3, calculated as ServiceB ServiceA

ServiceB
3 (c) The

fraction change in service level in Scenario B compared to Scenario S, calculated as ServiceB ServiceS
ServiceB

(d) The fraction change in service level in Scenario

A compared to Scenario A3, calculated as ServiceA ServiceA
ServiceA

3 . (e) The fraction change in service level in Scenario A compared to Scenario S, calculated as
ServiceA ServiceS

ServiceA
. Blue color indicates Scenario B or S has better service level than Scenario A, while red color indicates Scenario A provides better

service. Grid resolution is ° × °0.005 0.005 , roughly equivalent to ×0.5 km 0.5 km.

Fig. 12. Change in Response time (TR) under different ride sharing participation and fleet size scenarios.
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not been considered in this study. Including the pricing, rebound effects, and induced demands due to mode choice change can help
further improve the model and provide additional insights. Additionally, while our model accounts for the heterogeneous preference
of riders in the form of the allowable distance deviation and the sharing participation level, the model can be improved by in-
corporating better sharing decision making process (e.g., considering the time value of money for different riders) when relevant data
and research on the sharing preference is available.

Appendix A. Supplementary information

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trc.2018.10.007.

References

Agatz, N., Erera, A.L., Savelsbergh, M.W., Wang, X., 2011. Dynamic ride-sharing: A simulation study in metro atlanta. Procedia-Soc. Behav. Sci. 17, 532–550.
Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D., 2017. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Nat. Acad. Sci.

201611675.
Barth, M., Todd, M., 1999. Simulation model performance analysis of a multiple station shared vehicle system. Transp. Res. Part C: Emerg. Technol. 7 (4), 237–259.
Brownell, C., Kornhauser, A., 2014. A driverless alternative: fleet size and cost requirements for a statewide autonomous taxi network in new jersey. Transp. Res. Rec.: J. Transp.

Res. Board (2416), 73–81.
Cai, H., Xu, M., 2013. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns. Environ. Sci. Technol. 47 (16), 9035–9043.
Cai, H., Zhan, X., Zhu, J., Jia, X., Chiu, A.S., Xu, M., 2016. Understanding taxi travel patterns. Physica A 457, 590–597.
Caulfield, B., 2009. Estimating the environmental benefits of ride-sharing: A case study of dublin. Transp. Res. Part D: Transp. Environ. 14 (7), 527–531.
Chen, H., Rakha, H.A., 2016. Multi-step prediction of experienced travel times using agent-based modeling. Transp. Res. Part C: Emerg. Technol. 71, 108–121.
Chen, T.D., Hanna, J.P., Kockelman, K.M., 2016. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transp.

Res. Part A 94, 243–254.
Dong, Y., Wang, S., Li, L., Zhang, Z., 2018. An empirical study on travel patterns of internet based ride-sharing. Transp. Res. Part C: Emerg. Technol. 86, 1–22. URL <http://

www.sciencedirect.com/science/article/pii/S0968090X17302954> .
d’Orey, P.M., Ferreira, M., 2014. Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach. IET Intel. Transport Syst. 9 (2),

210–220.
EPA, 2017. Greenhouse Gases Equivalencies Calculator - Calculations and References. <https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-

and-references>, (accessed: 4/16/2017).
Fagnant, D.J., Kockelman, K.M., 2014. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C: Emerg.

Technol. 40, 1–13.
Fagnant, D.J., Kockelman, K.M., 2016. Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in austin, texas. Transportation 1–16.
Farrington, R., Rugh, J., 2000. Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range: Preprint. Tech. Rep., National Renewable Energy

Lab., Golden, CO (US).
FHWA, 2011. Summary of Travel Trends: 2009 National Household Travel Survey, 82. URL: <http://nhts.ornl.gov>.
Fontaras, G., Pistikopoulos, P., Samaras, Z., 2008. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles.

Atmosph. Environ. 42 (18), 4023–4035.
Fortune, 2016. Uber Now Has 40 Million Monthly Riders Worldwide — Fortune.com. <http://fortune.com/2016/10/20/uber-app-riders/> (accessed: 8/29/2017).
Galland, S., Knapen, L., Yasar, A.-U.-H., Gaud, N., Janssens, D., Lamotte, O., Koukam, A., Wets, G., 2014. Multi-agent simulation of individual mobility behavior in carpooling.

Transp. Res. Part C: Emerg. Technol. 45, 83–98.
Gawron, J.H., Keoleian, G.A., De Kleine, R.D., Wallington, T.J., Kim, H.C., 2018. Life cycle assessment of connected and automated vehicles: Sensing and computing subsystem

and vehicle level effects. Environ. Sci. Technol. 52 (5), 3249–3256. https://doi.org/10.1021/acs.est.7b04576. pMID: 29446302.
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., 2008. Understanding individual human mobility patterns. Nature 453 (7196), 779.
Greene, D.L., Plotkin, S., 2011. Reducing greenhouse gas emission from us transportation. Arlington: Pew Center Global Climate Change.
Gurumurthy, K.M., Kockelman, K.M., 2018. Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using cell phone data from orlando, florida. In:

Transportation Research Board 97th Annual Meeting. TRB.
Hawkins, T.R., Singh, B., Majeau-Bettez, G., Stromman, A.H., 2013. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17 (1),

53–64.
Hong, Z., Chen, Y., Mahmassani, H.S., Xu, S., 2017. Commuter ride-sharing using topology-based vehicle trajectory clustering: Methodology, application and impact evaluation.

Transp. Res. Part C: Emerg. Technol. 85, 573–590.
Kleiner, A., Nebel, B., Ziparo, V.A., 2011. A mechanism for dynamic ride sharing based on parallel auctions. In: IJCAI. Vol. 11. pp. 266–272.
Krueger, R., Rashidi, T.H., Rose, J.M., 2016. Preferences for shared autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 69, 343–355.
Levin, M.W., 2017. Congestion-aware system optimal route choice for shared autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 82, 229–247.
Li, B., Krushinsky, D., Woensel, T.V., Reijers, H.A., 2016. The share-a-ride problem with stochastic travel times and stochastic delivery locations. Transp. Res. Part C: Emerg.

Technol. 67, 95–108.
Lin, Y., Li, W., Qiu, F., Xu, H., 2012. Research on optimization of vehicle routing problem for ride-sharing taxi. Procedia-Soc. Behav. Sci. 43, 494–502.
Ma, S., Zheng, Y., Wolfson, O., 2015. Real-time city-scale taxi ridesharing. IEEE Trans. Knowledge Data Eng. 27 (7), 1782–1795.
Martinez, L.M., Correia, G.H., Viegas, J.M., 2015. An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to lisbon (portugal).

J. Adv. Transp. 49 (3), 475–495.
Nourinejad, M., Roorda, M.J., 2016. Agent based model for dynamic ridesharing. Transport. Res. Part C: Emerg. Technol. 64, 117–132.
NYC DOT, 2014. 2014 Taxicab Factbook. Tech. Rep.
NYC DOT, 2016a. 2016 Taxicab Factbook. Tech. Rep.
NYC DOT, 2016b. NYC Taxi and Limousine Commission - Trip Record Data. <http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml> (accessed: 4/14/2017).
Qian, X., Zhang, W., Ukkusuri, S.V., Yang, C., 2017. Optimal assignment and incentive design in the taxi group ride problem. Transp. Res. Part B: Methodol.
Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C., 2014. Quantifying the benefits of vehicle pooling with shareability networks. Proc. Nat. Acad. Sci. 111 (37),

13290–13294.
Santos, D.O., Xavier, E.C., 2015. Taxi and ride sharing: A dynamic dial-a-ride problem with money as an incentive. Expert Syst. Appl. 42 (19), 6728–6737.
Teubner, T., Adam, M.T., Camacho, S., Hassanein, K., 2014. Understanding resource sharing in c2c platforms: the role of picture humanization. ACIS.
U.S. DoE, 2016. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2014. Tech. Rep., U.S. Department of Energy.
Wadud, Z., MacKenzie, D., Leiby, P., 2016. Help or hindrance? the travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A: Policy Practice 86, 1–18.
Wang, H., Mostafizi, A., Cramer, L.A., Cox, D., Park, H., 2016. An agent-based model of a multimodal near-field tsunami evacuation: Decision-making and life safety. Transp. Res.

Part C: Emerg. Technol. 64, 86–100.
Zou, M., Li, M., Lin, X., Xiong, C., Mao, C., Wan, C., Zhang, K., Yu, J., 2016. An agent-based choice model for travel mode and departure time and its case study in beijing. Transp.

Res. Part C: Emerg. Technol. 64, 133–147.

M. Lokhandwala, H. Cai Transportation Research Part C 97 (2018) 45–60

60

https://doi.org/10.1016/j.trc.2018.10.007
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0005
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0010
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0010
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0015
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0020
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0020
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0025
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0030
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0035
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0040
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0045
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0045
http://www.sciencedirect.com/science/article/pii/S0968090X17302954
http://www.sciencedirect.com/science/article/pii/S0968090X17302954
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0055
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0055
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0065
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0065
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0070
http://nhts.ornl.gov
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0085
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0085
http://fortune.com/2016/10/20/uber-app-riders/
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0095
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0095
https://doi.org/10.1021/acs.est.7b04576
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0105
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0110
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0120
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0120
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0125
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0125
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0135
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0140
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0145
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0145
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0150
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0155
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0160
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0160
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0165
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0185
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0190
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0190
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0195
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0210
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0215
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0215
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0220
http://refhub.elsevier.com/S0968-090X(18)30755-1/h0220

	Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC
	Introduction
	Method and data
	Agent-Based Model (ABM)
	Data and exploratory analysis
	Model assumptions
	Modeling taxi shifts (for traditional taxi scenarios only)
	Simulation scenarios

	Results
	Fleet reduction
	Increased resource utilization
	Environmental benefits
	Spatial coverage change
	Changes in efficiency of matching

	Conclusion
	Supplementary information
	References


